目的 本实验设计开发了新型的亲和小体(affibody)-DNA四面体纳米结构用以支载小分子核苷类药物,以此提高其治疗效果,降低全身毒性。笔者选用5-氟尿嘧啶脱氧核苷(FUdR)作为典型的核苷药物,并通过化学修饰获得其亚磷酰胺形式的化合物。方法 通过DNA固相合成技术分别将10个FUdR分子连接到4条DNA单链的5'末端,该结构通过linker与靶向配体affibody偶联。4条DNA单链再根据碱基互补配对的原则自组装形成具有靶向作用的affibody-FUdR-DNA四面体纳米药物。结果 该纳米药物尺寸为20 nm,载药FUdR的摩尔比例为19.6%,其在血浆中稳定性良好。体外细胞实验显示该纳米药物对HER2高表达乳腺癌细胞BT474表现出高选择性和高细胞抑制活性(81.2%),而对HER2低表达细胞MCF-7具有较低毒性。结论 Affibody-DNA四面体纳米结构作为1种简单而有效的主动靶向纳米递送载体,为核苷类抗肿瘤药物的运输提供了新的途径。
Abstract
OBJECTIVE To design and develop a new affibody-engineered DNA nanostructure attached with nucleoside analogues to improve treatment efficacy and reduce their systemic toxicity. METHODS 5-Fluorodeoxyuridine (FUdR) was chosen as a typical nucleoside and derivatized to its phosphoramidite form. Four DNA strands were synthesized and 10 FUdR molecules were attached to 5' end of each DNA strand. An affibody molecule was connected to the end of polymeric FUdR through a linker in one of the four strands. A DNA tetrahedron was self-assembled through four DNA strands according to the principle of base complementary pairing. RESULTS This nano-drug has a size of 20 nm, and the drug-loading of 19.6% for FUdR in mole ratio was contained. The drug also have a good stability in plasma. The in vitro results showed that the nano-drug had high selectivity and inhibition (81.2%) for breast cancer cells BT474 overexpressing HER2 and low toxicity in MCF-7 cells with low HER2 expression. CONCULUSION The affibody-DNA tetrahedrons, as a simple and effective active targeting delivery nanocarrier, provide a new avenue for the transport of nucleoside antitumor drugs.
关键词
DNA四面体 /
亲和小体 /
5-氟尿嘧啶脱氧核苷 /
靶向性 /
细胞毒性 /
乳腺癌
{{custom_keyword}} /
Key words
DNA tetrahedron /
affibody /
5-fluorodeoxyuridine /
targeting /
cytotoxicity;breast cancer
{{custom_keyword}} /
中图分类号:
R944
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] GALMARINI C M, MACKEY J R, DUMONTET C, et al. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol, 2002, 3(7): 415-424.
[2] PARKER W B, et al. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem Rev, 2009, 109(7):2880-2893.
[3] JORDHEIM L P, DURANTEL D, ZOULIM F, et al. Advances in the development of nucleoside and nucleotide analogues for cancer and viral diseases. Nat Rev Drug Discov, 2013, 12(6): 447-464.
[4] HEIDELBERGER C, CHAUDHURI N K, DANNEBERG P, et al. Fluorinated pyrimidines, a new class of tumor-inhibitory compounds. Nature, 1957, 179(4561): 663-666.
[5] LONGLEY D, HARKIN D P, JOHNSTON P G, et al. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer, 2003, 3(5): 330-338.
[6] SEO H W, KIM D Y, KWON D Y, et al. Injectable intratumoral hydrogel as 5-fluorouracil drug depot. Biomaterials, 2013, 34(11): 2748-2757.
[7] ELMESHAD A N, MORTAZAVI S M, MOZAFARI M R, et al. Formulation and characterization of nanoliposomal 5-fluorouracil for cancer nanotherapy. J Liposome Res, 2014, 24(1): 1-9.
[8] ROTH S K, EPLEY C C, NOVAK J J, et al. Photo-triggered release of 5-fluorouracil from a MOF drug delivery vehicle. Chem Commun, 2018, 54(55): 7617-7620.
[9] SHAYAN K, NOWROOZI A, et al. Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study. Appl Surf Sci, 2018, 428(15): 500-513.
[10] WANG P, MEYER T A, PAN V, et al. The beauty and utility of DNA origami. Chem, 2017, 2(3): 359-382.
[11] GOODMAN R P, SCHAAP I A T, TARDIN C F, et al. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310(5754): 1661-1665.
[12] GOODMAN R P, BERRY R M, TURBERFIELD A J, et al. The single-step synthesis of a DNA tetrahedron. Chem Commun, 2004, 21(12): 1372-1373.
[13] KANG J H, KIM K R, LEE H, et al. In vitro and in vivo behavior of DNA tetrahedrons as tumor-targeting nanocarriers for doxorubicin delivery. Colloids Surf B, 2017, 157(2017): 424-431.
[14] ZHANG G, ZHANG Z, YANG J, et al. DNA tetrahedron delivery enhances doxorubicin-induced apoptosis of HT-29 colon cancer cells. Nanoscale Res Lett, 2017, 12(1): 495-503.
[15] ZHANG Y, JIANG S, ZHANG D, et al. DNA-affibody nanoparticles for inhibiting breast cancer cells overexpressing HER2. Chem Commun, 2017, 53(3): 573-576.
[16] ZHANG C, ZHANG H L, HAN M N, et al. DNA-affibody nanoparticle delivery system for cisplatin-based breast cancer chemotherapy. RSC Adv, 2019, 9(10): 1982-1989.
[17] SILVA E F, BAZONI R F, RAMOS E B, et al. DNA-doxorubicin interaction: new insights and peculiarities. Biopolymers, 2016, 107(3): 22998-23007.
[18] STHL S, GRSLUND T, KARLSTRM A E, et al. Affibody molecules in biotechnological and medical applications. Trends Biotechnol, 2017, 35(8): 691-712.
[19] EIGENBROT C, ULTSCH M, DUBNOVITSKY A, et al. Structural basis for high-affinity HER2 receptor binding by an engineered protein. Proc Natl Acad Sci USA, 2010, 107(34): 15039-15044.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
河北省高等学校高层次人才科学研究项目资助(GCC 2014013);河北大学自然科学研究计划项目资助(3333112);河北省自然科学基金专项资助(B2016201031)
{{custom_fund}}